Digital Signatures
Learn how to generate and verify digital signatures in Go using the crypto package
Digital signatures are a fundamental cryptographic mechanism providing data authenticity and integrity. Go provides built-in support for digital signatures through its crypto
package, particularly crypto/rsa
and crypto/ecdsa
for RSA and ECDSA protocols respectively.
Creating and Verifying RSA Signatures
Here's a simple example to generate and verify a digital signature using RSA:
package main
import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/sha256"
"fmt"
)
func main() {
// Generate RSA keys.
privateKey, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
publicKey := &privateKey.PublicKey
// Message to be signed.
message := []byte("golang crypto signature example")
// Create a hash of the message.
hashed := sha256.Sum256(message)
// Sign the hashed message.
signature, err := rsa.SignPKCS1v15(rand.Reader, privateKey, crypto.SHA256, hashed[:])
if err != nil {
panic(err)
}
fmt.Printf("Signature: %x\n", signature)
// Verify the signature.
err = rsa.VerifyPKCS1v15(publicKey, crypto.SHA256, hashed[:], signature)
if err != nil {
fmt.Println("Verification failed!")
} else {
fmt.Println("Verification successful!")
}
}
Creating and Verifying ECDSA Signatures
Here's how you can use ECDSA for digital signatures in Go:
package main
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"fmt"
)
func main() {
// Generate ECDSA keys.
privateKey, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
panic(err)
}
publicKey := &privateKey.PublicKey
// Message to be signed.
message := []byte("golang ecdsa signature example")
// Create a hash of the message.
hashed := sha256.Sum256(message)
// Sign the hashed message.
r, s, err := ecdsa.Sign(rand.Reader, privateKey, hashed[:])
if err != nil {
panic(err)
}
// Verify the signature.
isValid := ecdsa.Verify(publicKey, hashed[:], r, s)
if isValid {
fmt.Println("Verification successful!")
} else {
fmt.Println("Verification failed!")
}
}
Best Practices
- Key Management: Ensure that private keys are stored securely and access is restricted to authorized entities only.
- Hash Function Choice: Use a cryptographically secure hash function such as SHA-256 or SHA-3 for better security.
- Error Handling: Always handle errors gracefully. In cryptography, failing silently can lead to vulnerabilities.
Common Pitfalls
- Incorrect Key Usage: Mixing keys for different cryptographic purposes (e.g., signing and encryption) can compromise security.
- Ignoring Error Messages: Ignoring or misinterpreting error messages during verification can lead to false positives in signature validation.
- Poor Randomness Source: Use strong random number generators such as
crypto/rand
for generating keys and nonces.
Performance Tips
- Use Appropriate Key Sizes: Balance security and performance by selecting appropriate key sizes. Larger keys offer better security but can be slower.
- Caching and Reuse: Cache computed values where possible instead of recalculating them in repeated operations.
- Profile and Benchmark: Use Go's testing tools to profile and optimize the performance of your cryptographic operations, particularly for high-volume scenarios.